Product Description

Product Info
Description  Rear Drive Shaft
OEM NO. 37100-0K030
Size Standard
Model  For CHINAMFG Hilux Kun25
OEM / ODM Available
Packing Details Neutral packing or original packing or as customers’ requirements
Lead Time 2-3 days in stock or 20-25 days out of Stock
Shipping & Payment Terms
Port of Loading HangZhou/other port as you want
Shipping Method By Sea,  By Air, By Carrier 
Payment Terms T/T, Western Union, Paypal

What we can supply :
1. Reasonable  Price and effective after -service
2. Strict Inspection System
3. delivery in time

Our advantage
1.Many years professional manufacturing supplier experience.
2.Our products range is well equipped
3. Factory price 
4. Customized services
5.Sample available for quality examination
6. Small order welcome

Shipment and Payment
1: Usually we ship your order by sea or by air…
2: We do our best to ship your order within 1 week after receiving your payment
3: We’ll tell you the tracking number once your order has been sent.
4: We accept T/T Bank transfer, L/C, Western Union, Paypal.

  Q & A

  1. How Can I Get Your catalogue?
    A: Send An Enquiry To Us And Tell Us U Need Our catalogue, Our Sales Will Reply U Within 12 Hours With product catalogue

    Q2. Can I Get An Sample To Check Quality Before Mass Order?
    A: Yes, You Can. Welcome To Place Sample Order To Check Our Quality. I Do Believe Our High Quality Products Will Bring More Orders For You From Your Clients!

    Q3. Any Guarantee For Your Products?
    A: Our Company’s Culture Is”Quality Is Our Culture!”All Of Our Products With 12Months FREE GUARANTEE,Never Need To Worry About The After-Sale Service. We Will Always Be Here To Support Your Business!

    Q4. How About Your Delivery Time?
    A: Generally, It Will Take 3 To 30 Days After Receiving Your Advance Payment. The Specific Delivery Time Depends
    On The Items And The Quantity Of Your Order.

    Q5.Do You Test All Your Goods Before Delivery?
    A: Yes, We Have 100 Q% Test Before Delivery.

    Q6. How Do You Make Our Business Long-Term And Good Relationship?
    1. We Keep Good Quality And Competitive Price To Ensure Our Customers Benefit ;
    2. We Respect Every Customer As Our Friend And We Sincerely Do Business And Make Friends With Them, No Matter Where They Come From.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Color: Black
Certification: ISO
Samples:
US$ 80/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pto shaft

How Do Rear Drive Shafts Ensure Efficient Power Transfer While Maintaining Balance?

Rear drive shafts play a crucial role in ensuring efficient power transfer from the engine or transmission to the rear wheels of a vehicle. At the same time, they must maintain balance to prevent vibrations, reduce stress on drivetrain components, and enhance overall performance. Here’s a detailed explanation of how rear drive shafts achieve efficient power transfer while maintaining balance:

1. Balanced Design:

Rear drive shafts are carefully designed and manufactured to achieve balance. Balance refers to the distribution of mass along the length of the drive shaft. Imbalances can lead to vibrations and unwanted forces that affect the smooth operation of the drivetrain. To achieve balance, drive shafts are dynamically balanced during the manufacturing process. This involves adding weights or removing material at specific locations to counteract any uneven distribution of mass. By achieving balance, the drive shaft can rotate smoothly at high speeds, minimizing vibrations and ensuring efficient power transfer.

2. Proper Length and Diameter:

The length and diameter of the rear drive shaft are important considerations for maintaining balance. A drive shaft that is too long or too short can result in excessive deflection or bending, leading to vibrations and potential failure. Similarly, an incorrect diameter can affect the stiffness and torsional strength of the drive shaft, resulting in imbalances. Manufacturers carefully calculate the optimal length and diameter of the drive shaft based on the vehicle’s specifications and requirements to ensure proper balance and power transfer.

3. High-Quality Materials:

The selection of high-quality materials is crucial for maintaining balance in rear drive shafts. Drive shafts are typically made from materials such as steel or aluminum. These materials offer the necessary strength and rigidity while being lightweight. The use of high-quality materials ensures that the drive shaft can withstand the torque and rotational forces without excessive flexing or bending, which can lead to imbalances. Additionally, the materials are chosen for their ability to resist fatigue and vibration, further contributing to balanced operation.

4. Precision Manufacturing:

Rear drive shafts are manufactured with precision to maintain balance. Advanced manufacturing techniques, such as computer-aided design (CAD) and computer numerical control (CNC) machining, are employed to ensure the drive shaft’s dimensional accuracy and balance. The manufacturing process involves precise machining of the shaft, including the yokes, flanges, and other components, to achieve tight tolerances and minimize any deviations that could affect balance. Strict quality control measures are implemented to verify the balance of each drive shaft before it is installed in a vehicle.

5. Vibration Dampening Techniques:

Rear drive shafts often incorporate vibration dampening techniques to further enhance balance and reduce unwanted vibrations. These techniques may include the use of balancing weights, dampers, or vibration-absorbing materials. Balancing weights can be strategically placed along the drive shaft to counteract any remaining imbalances. Dampers, such as rubber or elastomer components, are employed to absorb and dissipate vibrations, preventing them from propagating throughout the drivetrain. By minimizing vibrations, these techniques help maintain overall balance and contribute to efficient power transfer.

6. Universal Joints or Constant Velocity Joints:

Rear drive shafts incorporate flexible joints, such as universal joints (u-joints) or constant velocity (CV) joints, to accommodate changes in angles and maintain balance. These joints allow for angular movement and compensate for variations in the alignment between the transmission or transfer case and the rear differential. By allowing the drive shaft to flex and articulate, these joints help prevent binding, minimize stress on the drivetrain components, and maintain balance throughout the range of motion.

7. Regular Maintenance and Inspection:

Maintaining balance in rear drive shafts requires regular maintenance and inspection. Over time, components may wear or become damaged, leading to imbalances. It is important to periodically inspect the drive shaft for signs of wear, such as worn u-joints or damaged CV joints. Additionally, proper lubrication of the joints and ensuring the drive shaft is properly installed and aligned are essential for maintaining balance. Routine maintenance and inspections help detect and address any issues that could affect the drive shaft’s balance and overall performance.

In summary, rear drive shafts ensure efficient power transfer while maintaining balance through a combination of balanced design, proper length and diameter, high-quality materials, precision manufacturing, vibration dampening techniques, flexible joints, and regular maintenance. By achieving and maintaining balance, rear drive shafts contribute to smooth operation, minimize vibrations, and enhance the overall performance and longevity of the drivetrain system.

pto shaft

How Do Rear Drive Shafts Enhance the Traction and Stability of Off-Road Vehicles?

Rear drive shafts play a crucial role in enhancing the traction and stability of off-road vehicles. Off-road driving presents unique challenges, such as uneven terrain, steep inclines, loose surfaces, and obstacles, where maintaining traction and stability is vital. Here’s a detailed explanation of how rear drive shafts contribute to enhancing the traction and stability of off-road vehicles:

1. Power Distribution:

Rear drive shafts are responsible for transmitting torque from the transfer case or transmission to the rear differential or rear axle in off-road vehicles. This power distribution allows the rear wheels to receive torque and apply it to the ground, enhancing traction. By providing power to the rear wheels, the rear drive shafts ensure that the wheels dig into the terrain, maximizing grip and reducing the chances of wheel spin. This power distribution contributes to maintaining forward momentum and preventing loss of traction in challenging off-road conditions.

2. Rear-Wheel Traction:

Rear drive shafts enable rear-wheel traction, which is crucial for off-road vehicles. When traversing uneven or slippery terrain, the weight of the vehicle shifts to the rear wheels during acceleration. The rear drive shafts deliver torque to the rear wheels, allowing them to maintain traction and effectively propel the vehicle forward. By ensuring rear-wheel traction, the drive shafts help the off-road vehicle overcome obstacles, climb steep inclines, and navigate challenging off-road terrains where maintaining grip is essential.

3. Weight Transfer:

Rear drive shafts contribute to proper weight transfer during off-road driving. As the vehicle encounters obstacles or uneven terrain, weight transfer occurs, with the weight shifting from one wheel to another. The rear drive shafts aid in balancing the weight distribution, preventing excessive weight transfer to a single wheel. This balanced weight transfer improves stability and minimizes the chances of wheel lift or loss of control. It allows the off-road vehicle to maintain stability and traction, enhancing overall safety and performance.

4. Axle Articulation:

Off-road vehicles often require significant axle articulation to maintain contact between the wheels and the ground, especially when navigating rough terrain. Rear drive shafts accommodate the movement and flexing of the suspension system, allowing the rear wheels to articulate independently. This flexibility enables the wheels to maintain contact with the ground, even when encountering large obstacles or uneven surfaces. By adapting to the changing terrain, the rear drive shafts contribute to improved traction and stability, ensuring the off-road vehicle can maintain forward momentum.

5. Torque Control:

Rear drive shafts play a role in torque control, which is essential for maintaining traction and stability off-road. Some off-road vehicles feature differential locks or limited-slip differentials in the rear axle. The rear drive shafts transmit torque to these differentials, allowing for better power distribution between the rear wheels. This torque control helps prevent wheelspin and ensures that power is delivered to the wheels with traction, enhancing overall traction and stability in challenging off-road conditions.

6. Ground Clearance:

Rear drive shafts contribute to improving ground clearance in off-road vehicles. The design and positioning of the drive shafts allow for higher ground clearance compared to vehicles with front-wheel drive configurations. Increased ground clearance reduces the risk of the drive shafts scraping or getting damaged by obstacles, rocks, or uneven surfaces. By providing adequate ground clearance, the rear drive shafts enable the off-road vehicle to navigate rough terrain without hindrance, maintaining traction and stability.

7. Durability and Reliability:

Rear drive shafts in off-road vehicles are designed to withstand the demanding conditions encountered during off-road driving. They are built to be robust and durable, capable of withstanding impacts, vibrations, and extreme articulation. The reliability and strength of the rear drive shafts contribute to maintaining traction and stability by ensuring that the power transmission remains intact, even in challenging off-road situations.

In summary, rear drive shafts enhance the traction and stability of off-road vehicles through power distribution, rear-wheel traction, weight transfer management, axle articulation accommodation, torque control, increased ground clearance, and durability. These factors collectively contribute to maintaining traction, allowing the off-road vehicle to overcome obstacles, navigate challenging terrains, and ensure stability and control in off-road driving conditions.

pto shaft

How Do Rear Drive Shafts Impact the Performance and Drivability of Vehicles?

Rear drive shafts have a significant impact on the performance and drivability of vehicles. As a crucial component of the drivetrain system, the rear drive shaft affects various aspects of a vehicle’s operation, including power delivery, handling, stability, and overall driving experience. Here’s a detailed explanation of how rear drive shafts impact the performance and drivability of vehicles:

1. Power Transmission:

Rear drive shafts play a vital role in transmitting power from the engine or transmission to the wheels. As the engine generates torque, the rear drive shaft transfers this rotational force to the rear wheels, enabling propulsion and vehicle movement. The efficiency and effectiveness of power transmission through the rear drive shaft directly impact a vehicle’s acceleration, towing capacity, and overall performance.

2. Traction and Stability:

The distribution of power between the rear wheels, controlled by the rear drive shaft and the rear differential, significantly affects a vehicle’s traction and stability. By transmitting torque to the rear differential, the rear drive shaft allows the differential to distribute power to each rear wheel based on traction conditions.

Proper power distribution between the rear wheels ensures balanced traction, reducing the likelihood of wheel slippage or loss of control. This enhances the vehicle’s stability, especially during acceleration, cornering, or driving on uneven or slippery surfaces.

3. Handling and Cornering:

Rear drive shafts influence a vehicle’s handling and cornering capabilities. In rear-wheel drive (RWD) vehicles, the rear drive shaft connects the transmission or transfer case to the rear differential, resulting in a weight distribution biased towards the rear of the vehicle.

This weight distribution, combined with the rear drive shaft’s torque transmission to the rear wheels, contributes to better traction and stability during cornering. RWD vehicles typically exhibit a more balanced and predictable handling characteristic, allowing drivers to maintain better control and confidence while navigating turns.

4. Suspension Compatibility:

Rear drive shafts also need to be compatible with a vehicle’s suspension system. The suspension system allows the wheels to move independently, absorbing bumps, road irregularities, and other disturbances for a smoother ride.

The rear drive shaft must accommodate the vertical movement of the suspension without affecting power transmission. It achieves this by incorporating flexible joints or splines that allow the drive shaft to expand or contract in length as the suspension moves. This compatibility ensures that the rear drive shaft does not hinder the suspension’s ability to absorb shocks and maintain tire contact with the road surface.

5. Drivetrain Efficiency:

The efficiency of a vehicle’s drivetrain system is influenced by the performance of the rear drive shaft. A well-designed and properly maintained rear drive shaft minimizes power losses and mechanical friction, allowing more power to reach the wheels and optimizing overall drivetrain efficiency.

Efficient power transmission through the rear drive shaft contributes to improved fuel efficiency, reduced energy waste, and enhanced performance. Regular maintenance, such as lubrication and alignment, ensures that the rear drive shaft operates smoothly and maximizes its contribution to drivetrain efficiency.

6. Four-Wheel Drive Capability:

In vehicles equipped with four-wheel drive (4WD) or all-wheel drive (AWD) systems, rear drive shafts play a crucial role in enabling four-wheel drive capability. The rear drive shaft transfers torque to the transfer case, which distributes power to both the front and rear differentials.

By facilitating power distribution to all four wheels, rear drive shafts enhance the vehicle’s off-road performance, traction, and stability. Four-wheel drive capability allows the vehicle to tackle challenging terrain, slippery conditions, or uneven surfaces with improved control and maneuverability.

In summary, rear drive shafts have a significant impact on the performance and drivability of vehicles. They affect power transmission, traction, stability, handling, suspension compatibility, drivetrain efficiency, and enable four-wheel drive capability. By understanding and optimizing the design, maintenance, and performance of rear drive shafts, manufacturers and drivers can enhance a vehicle’s overall performance, efficiency, and driving experience.

China supplier Auto Parts Rear Drive Shaft for CZPT Hilux Kun25 (37100-0K030)  China supplier Auto Parts Rear Drive Shaft for CZPT Hilux Kun25 (37100-0K030)
editor by CX 2024-03-02